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ABSTRACT 

The multilayer approximation previously used to study propagation in wind-free 
atmospheres is extended to include winds. Two generalized acoustic potentials are 
defined which are continuous even at horizontal discontinuities in wind velocity or 
sound speed and the residual equations which these quantities satisfy are derived. 
Two dispersion functions are defined whose roots give the phase-velocity magnitude and 
phase-velocity direction for normal-mode waves propagating kith given frequency 
and given group-velocity direction. The multilayer approximation is introduced for 
computing these dispersion functions by approximating continuously stratified at- 
mospheres with models consisting of a finite number of layers, each with constant 
wind velocity and sound speed. Numerical methods for finding the roots of the disper- 
sion function are discussed. The theory is then applied to an example of a milti- 
layered atmosphere and curves, for several horizontal group-velocity directions, 
of phase-velocity, group-velocity, and phase-velocity direction versus frequency are 
tabulated for several normal modes. 

The consideration of the propagation of infrasonic waves in the atmosphere 

generally, particularly at lower frequencies, requires full wave methods. The most 
practical method for numerical computations of propagation in realistic atmos- 
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pheres which has been developed to date is the multilayer method which was devised 
independently by Pfeffer and Zarichny [I], [2] and by Press and Harkrider [3], 
[4] for atmospheres without winds. In the application of the multilayer method 
to wave-propagation problems, the continuously stratified atmosphere is approxi- 
mated by an atmosphere consisting of a finite number of layers-each layer hav- 
ing constant sound speed. The uppermost layer is taken as unbounded from above. 
The author [5] has recently proven that numerical solutions to wave-propagation 
problems computed with this approximation will approach those for any con- 
tinuously stratified atmosphere, if the number of layers in taken sufficiently large. 

Previous applications of the multilayer method have been confined to atmos- 
pheres without winds. Studies of the effects of winds on guided low-frequency waves 
have been made, however, by Weston and VanHulsteyn [6] and by the present 
author [7]. The former authors studied the propagation of free waves without 
consideration of the source and derived the eigenvalue problem governing the 
propagation of guided waves. The present author gave a general formulation 
of the problem of waves from a point source in a temperature- and wind-stratified 
atmosphere and showed how the general solution can be expressed at large hori- 
zontal distances in a series of terms which can be identified as the analog of the 
normal-mode waves existing in atmospheres without winds. Numerical results 
in both of these cited papers were limited, however, due to the lack of a con- 
venient computational method. 

In this note, the multilayer approximation is extended to the case where the 
ambient atmosphere has horizontal winds which vary with height in both direc- 
tion and magnitude. The ambient temperature of the atmosphere is also assumed 
to vary with height. This extension is prompted by the author’s recent investi- 
gations [7] which indicate that atmospheric winds have an appreciable effect 
on infrasonic wave propagation in the atmosphere. The present paper is confined 
to the development of the numerical method and its application to the compu- 
tation of phase and group velocities of normal modes (i.e., guided modes). 
Other applications (such as the synthesis of transient waveforms from actual 
sources) will be relegated to later investigations. 

In the first section, the basic differential equations for acoustic-gravity wave 
propagation in a temperature- and wind-stratified atmosphere are derived from 
the linearized equations of hydrodynamics in a form convenient for the applica- 
tion of the multilayer approximation. Although these residual equations, given 
by Eqs. (lo), differ formally from those derived in a previous paper by the au- 
thor [7], the equivalence of the two sets of equations can be readily established. 
The principal advantage of the equations in the form derived here is that none of 
the coefficients depend explicitly on the derivatives of sound speed or wind speed 



MULTILAYER APPROXIMATION FOR WAVE PROPAGATION 345 

with respect to height. This implies that the two generalized acoustic “potentials” 
which satisfy the residual equations will be continuous-even at a surface of 
discontinuity. The continuity of these potentials is also demonstrated as ensuing 
from the requirements that total pressure (ambient plus acoustic) and vertical 
displacement be continuous at horizontal discontinuities up to first order in 
acoustic amplitudes. 

In the second section, a normal-mode dispersion function F is defined. The 
simultaneous roots of this function and an associated dispersion function P 
obtainable from F give the two horizontal components of the wave-propagation 
vector, or, alternatively, the phase velocity and phase-velocity direction, for nor- 
mal-mode waves of given frequency and group-velocity direction. In the third 
section, it is shown how the normal-mode dispersion function and the associated 
dispersion function may be computed by the multilayer method. 

Finally, in the fourth section, numerical methods for the computation of phase 
and group velocity curves are discussed and the theory is applied to an example 
of a temperature- and wind-stratified atmosphere. 

I. DERIVATION OF THE RESIDUAL EQUATIONS 

Our starting point for the residual equations is the linearized equations of 
hydrodynamics for air in the absence of viscosity and thermal conductivity. 
These, which represent a set of coupled partial differential equations for the de- 
viations p, Q, u of the pressure, density, and fluid velocity from their ambient 
values p0 , e0 , and v, may be written in the Eulerian form as 

e&Q + (u * WI = - 0~ - gee,, (la> 

4@ + u * v&l + @J * u = 0, (lb) 

(4P + u - VP,) = c2me + u * v&d, UC) 

where we have abbreviated 

D, = alat + v . v, 

c2 = YPypoleo~ 

(2) 

(3) 

Here g, e,, and y represent the acceleration of gravity, the unit vector in the 
vertical direction, and the ratio of specific heats of air, respectively. The quantity 
c is readily recognized as the speed of sound in a homogeneous atmosphere with 
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the neglect of gravity. In writing these equations, we have assumed that the 
zeroth order, or ambient variables pO, Q,, , and v, are independent of time I and 
of the horizontal coordinates x and JJ. Furthermore, the ambient wind velocity 
v is taken to be entirely horizontal (i.e., to have no vertical components). The 
ambient variables may vary arbitrarily with height z, although the height varia- 
tions of the quantities p,, and Q,, are related by the hydrostatic equation 

dpoldz = - gee. 

Equations (I), which represent five scalar equations in five unknowns, may be 
reduced to two coupled partial differential equations in two unknowns. The 
method chosen for accomplishing this begins with the introduction of two “po- 
tentials” Pi and !P2 by means of the equations 

u, = p,-‘12D, ul, , 

v - u = p,-lf2D, Y2, 

(44 

(4b) 

where U, denotes the vertical component of u. We may next express the first- 
order pressure p in terms of !P1 and Y2 by eliminating 0,~ from Eqs. (lb) and 
(lc), and then inserting Eqs. (4) into the resulting expression, obtaining 

QP = - D,ko~,~‘Yc~ ul, - slu,)l. 

(The hydrostatic equation is also used in obtaining this expression.) Since Eqs. 
(4) do not define !P1 and !P2 uniquely, it is clear from the above relation that, 
in addition, we may require 

P= - @op;“2(c2 p2 - gY1), (5) 

which we shall do. In the terminology of electromagnetic theory, Eq. (5) defines 
our “gauge”. 

Our next task is the elimination of Q, u,, and uy from Eqs. (I). One equation 
may be obtained by operating on both sides of Eqs. (la) with the horizontal 
component of the divergence. Doing this, we obtain 

eo[Dt(V . u - k’u,/ilz) + (h/dz) * Vu,] = - Vz2p, (6) 

where V22 represents the horizontal Laplacian. 
A second equation is obtained by operating on both sides of the z-component 

of (la) with D, and then eliminating 0,~ by use of (lb). The resulting equation is 
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The next step is to insert Eqs. (4) and (5) into Eqs. (6) and (7) and thereby 
obtain two coupled partial differential equations for !P1 and !P2. Doing this, with 
some algebraic manipulation (which we omit for brevity) and extensive use of 
the hydrostatic equation and Eq. (3), gives two equations, which we may write 
in matrix form as 

Q-3) 

where the matrix operator [Q] has the elements 

Qu = &‘a2 - tbWW’t 
Q,, = Dt2 - c2l’22 

Q,, = c-~(D,~ + g2v,‘) 

Q22 = (By)(g/c2)D,2 - gVza 

From the standpoint of the present paper, the chief utility of the partial dif- 
ferential equations (8) is that they yield the desired residual equations in a direct 
manner. The latter are obtained under the assumption that 

Y3 = a1 exp[- i(of - k,x - k,y)], (94 

y2 = fD2 exp[- i(wt - k,x - k,y)], (9b) 

where @r and @, are functions of the height z only and where w, k,, and kv are 
independent of X, y, z, and t. These three constants represent, respectively, the 
angular frequency and the X- and y-components of the horizontal wave number 
vector. We can assume expressions of the form (9) to be solutions of Eqs. (8) 
since the latter set is invariant under translations in X, y, and t. More general 
solutions of these equations may be formed as Fourier integrals over o, k,, and 
kv with the expressions (9) forming the integrands. (See, for example, the author’s 
previous formulation [7] of the expression for the field from a point source in a 
temperature- and wind-stratified atmosphere.) 

If we now substitute Eqs. (9) into Eqs. (8) we obtain the desired residual equa- 
tions, which have the form (in matrix notation) 
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where 

PIERCE 

All = dk2/-Q2) - %l(2C2h (1 la) 

A,, = 1 - c2k2/Q2, Ulb) 

AsI = g2k2/(Q2c2) - Q2/cz, (1 lc) 

A22= --All, (lldj 

with 
ii’ = o - k,v, - kuvy , 

ka = kz2 f ky2. 

(12) 

(13) 

The above completes our derivation of the desired residual equations. We should 
point out, however, that these are not the only possible set of such equations 
derivable from the linearized equations of hydrodynamics. In this respect, we 
note that a broad class of such residual equations may be derived by setting 

where [D] represents any nonsingular two-by-two matrix. For example, the re- 
sidual equations given in a previous paper [7] would be obtained by letting D1l = 

ag/c, D12 = - ac, D,, = a/c, and D,, = 0, where a is any nonzero quantity not 
depending on z. 

Our reason for choosing Eqs. (10) rather than any other pair of equivalent 
equations is that Eqs. (10) are particularly amenable to numerical computations. 
The fact that the elements of the matrix [A] do not contain any of the derivatives 
of c2 or v with respect to height implies that C$ and QZ must be continuous with 
height even in the event that c2 and v are discontinuous. This makes the appli- 
cation of the multi-layer method particularly straightforward. Furthermore, the 
fact that the trace of [A] is zero implies that the determinant of any matrix [R] 
is 1, if [R] connects the values of Qi, and a2 at a given height z1 to those at height 
z, via the relation 

This introduces a certain simplification in the formulas derived in Section III. 
Some additional remarks may be made at this point concerning our previous 

comment that the quantities @r and Q2 should be continuous at layer boundaries. 
If one proceeds from the requirements that total pressure and vertical particle 
displacement be continuous to first order in acoustic variables at such boundaries, 
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this can be demonstrated in another manner, providing one is careful to take into 
account the fact that the discontinuity surfaces move under acoustic disturbances 
causing the apparent ambient variables at either side of the boundary to vary. 
The first requirement gives, for harmonic disturbances of the form indicated by 
Eqs. (9), that 

be continuous at layer boundaries. However, it follows from Eqs. (1) and the 
hydrostatic equation that the above quantity is just - i~p,J’ * u/Q. Since the am- 
bient pressure is continuous with altitude, the continuity of 

follows directly. Similarly, the continuity of vertical displacement implies that 
u,/Q be continuous and thus that 

be continuous at any horizontal surface of discontinuity. The manner of deriva- 
tion given earlier rests on the fact that the residual equations (10) derived for an 
arbitrary stratified atmosphere do not have any coefficients which are singular 
at discontinuities. 

II. DEFINITION OF THE NORMAL-MODE DISPERSION FUNCTION 

For applications to the method of normal modes (i.e., of finding guided wave 
solutions to the linearized equations of hydrodynamics), it is necessary to find 
eigensolutions of the residual equations. Appropriate boundary conditions for 
the method of normal modes are that (1) @I be zero at the ground, z = 0; and (2) 
the magnitudes of both Q1 and QZ vanish with sufficient rapidity as z approaches 
infinity in such a manner that integrals over di12 and @22 be bounded as the upper 
limit goes to infinity. 

As has been shown by the author in a previous paper [7], the eigenvalue 
k = (kz2 + kv2)l12 for which these conditions are satisfied for given o and given 
direction ok of the horizontal wavenumber vector will correspond to a pole 
in the complex k plane if the field of a point source is expressed as an integral over 
o, k, and ok. If the residue theorem is invoked and the integral over 19~ is per- 
formed by the saddle-point method, the field at large distances will appear as a 
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sum over waves which may be considered as a sum over normal mode waves 
in analogy with the expressions obtained for acoustic waves in simple wave- 
guides. It should be emphasized that these normal mode waves correspond to 
neither a complete set nor an orthogonal set of eigenfunctions. 

The first boundary condition is required in order that the vertical velocity 
of the air at the ground be zero and is based on the tacit assumption that the 
ground is rigid. The second boundary condition is required in order that the cor- 
responding amplitude of the normal mode wave be nonzero. To impose the latter 
without making the numerical computations too complicated, we assume that 
the atmosphere above some height zM is isothermal and has constant winds. In 
this event the coefficients A, in the residual equations will be constant above z.+~. 
Thus, solutions of Eqs. (10) for z > z,!, satisfying the upper boundary condition 
are easily found if such exist. 

The criterion for the existence of solutions satisfying the upper boundary con- 
ditions is that the quantity 

G2 = (Ad2 + A,,A,,, (14) 

computed for the uppermost layer, be greater than zero. If this criterion is sa- 
tisfied, then the solutions satisfying the upper boundary condition are, for z > z, , 
of the general form 

Qzl = - DA12 exp( -Ge) (154 

Q2 = D(G + A,,) exp(-Q) (15b) 

where Q = z - z,, and G is the positive square root of (14). The quantity D is 
a constant. 

To apply the lower boundary condition, let us assume that a matrix [R] has 
been computed such that, for arbitrary Qs,O and G2n which represent Q1 and Ci% 
at z = zfif, the values of C& and Q2 at z = 0 are given by 

(16) 

(The method for computing [R] is described in the next section.) Then the lower 
boundary condition implies that 

R1l@l'J + R,,@J' = 0. (17) 

It follows from Eqs. (15) and (17) that, if both upper and lower boundary 
conditions are to be satisfied, then one must have (GU)2 > 0 and 
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where 
F(w kc, kJ = R,,A,U, - R,,(GU + AY,). (19) 

In the above, the superscript U implies that the values of the superscripted quan- 
tities are those appropriate to the region z > z,,. 

The function F defined by Eq. (19) shall be called the normal-mode dispersion 
function. Besides being a function of o, k,, and k,, it will also be a function (or 
functional) of the height profiles of c, v,, and vu. However, the dependence on 
the former quantities is of principal interest since the atmospheric variables will 
not be changed during the computation of phase and group velocity curves or 
during the synthesis of transient waveforms. 

When G2 is negative in the uppermost layer, the normal mode dispersion func- 
tion is not defined. In this event, we shall simply say that F does not exist. 

If F = 0 for a particular choice of QJ, k,, and k,, then the corresponding so- 
lution of the residual equations will represent a normal-mode wave which has 
a horizontal phase velocity vP, with a magnitude 

up = (,2/k2)“2. (20) 

The direction of vP will be denoted by the angle ok which may be defined by the 
equations 

cos t$ = k,lk, (214 

sin ek = k,/k, @lb) 

where k is the positive square root of k*. 
The group velocity V~ of the normal-mode wave may be computed from the 

equations 
V g* = - (~w%)l(aF/a~) 3 (22a) 

V g2/ = - (aFlak,)l(aFla0). (22b) 

Its magnitude will be denoted simply ug, while the angle, reckoned counterclock- 
wise, which vs makes with the x axis will be denoted as 6, such that vsz = va cos 8 
and v@ = vs sin 8. 

In this paper, we shall be interested in the computation of phase and group 
velocities for fixed group-velocity direction 8. This restriction is made for the con- 
venience of comparing computations with microbarovariograph data obtained 
at a single site. If a particular instrument is recording pressure variations due to 
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normal-mode waves excited by a localized source, then all of the normal-mode 
waves recorded should have the same group-velocity direction. Thus, the angle 0 
should be a constant for any given microbarovariograph recording. 

If 8 is fixed, then the set of values of W, k,, and k, which satisfy Eq. (18) is 
restricted by the additional relation 

where 

P(w, k,, k,, 0) = 0 (23) 

P(w, k,, 5, 13) = (aF/ak,) sin 8 - (aF/ak,) cos 0. (24) 

This follows from Eqs. (22). Since both dF/Fldk, and aF/ak, are functions of w, 
k, , ku which may be computed, the function P (which we call the auxiliary disper- 
sion function) may be considered as a known function of o, k,, and kv. 

For given w(), the two equations (18) and (23) will have a discrete and therefore 
denumerable set of solutions for k, and kw, which we label with the index n = 1, 
2, 3, etc. The solution pair (k,, , kv,) will be said to correspond to the nth normal 
mode. The phase velocity v,, and the phase velocity direction ekn of the nth nor- 
mal mode can be computed from the Eqs. (20) and (21), while the group-velocity 
magnitude upn may be computed from the equation 

V gn = [(aFlak,) + (af;lak,)2]1’2/iaF/;idwl (25) 

with k, = kz. and k2/ = kun. 
The indicing of the normal modes may be chosen in such a manner that km, 

kue and therefore t’r,, , elcn, and vgn are piecewise-continuous functions of W. 
The quantities vpn , kn, f3 and vgn are of particular significance and we shall therefore 
concern ourselves in the remainder of this paper with the development of a nu- 
merical procedure for describing the curves of vpn(~), f&,(o), and Vet for 
specified group-velocity direction 8 and specified profiles c(z), v,(z), and v,(z). 

One small subtlety in the theory should be mentioned at this point. Since 
Eq. (23) is unchanged if 8 is replaced by 0 + 7c, it may happen that some of the 
solutions may correspond to a group-velocity direction of f3 + z instead of the 
prespecified 0. One should in fact find all the solutions of Eqs. (18) and (23) and 
then discard those which correspond to a group-velocity direction of 8 + 7~‘. 
In practice, however, this complication can be avoided since Bkn and 8 will differ 
by only a small angle for any realistic model atmosphere. This fortunate oc- 
currence is due to the fact that the wind speeds are small compared to the speed 
of sound in any height region. To take advantage of the small wind speeds, we 
find it convenient to consider F and P as functions of co, up, and ok rather than 
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LO, k,, and 5. Then, if the method used for solving the Eqs. (18) and (23) consid- 
ers 19 as an initial approximation to ekn, we should expect the solution for ekn 
not to differ from t3 by too large an amount. 

III. COMPUTATIONAL METHOD FOR THE NORMAL-MODE DISPERSION FUNCTION 

We now discuss the application of the multilayer method to the computation 
of the normal-mode dispersion function F(co, kk , k,) and the auxiliary dispersion 
function P(o, k,, k,, 0) defined in the previous section. Our first task in this 
respect is to supply the details of just how one would obtain the elements of the 
matrix [R] which appear in Eq. (19). 

In order that machine computations of [R] not be unduly lengthly, we restrict 
ourselves to multilayer atmospheres, where the lower portion (z < zJt) is assumed 
to consist of a finite number M of layers, each with uniform thickness, constant 
sound speed, and constant wind-velocity components. Let us note that this re- 
striction is in actuality not a severe restriction since any realistic atmosphere can 
be approximated [5] by a multilayer model with a sufficiently large number of 
layers. However, one flaw in the method is that there is as yet no criteria developed 
for the number of layers which are needed to approximate a given atmosphere 
when a given accuracy is desired in the elements of [RI. Nevertheless, some meas- 
ure of the validity of a computation based on the multilayer approximation may 
be obtained by simply repeating the calculation using twice as many layers 
to approximate the actual atmosphere and then comparing the two answers. 
This sort of check could be applied at any stage in the computation. In what fol- 
lows, we shall assume that a sufficiently good multilayer atmospheric model has 
already been chosen. 

The layers are numbered with increasing altitude, the height of the top of the 
Ith layer with respect to the ground being denoted zi. There are A4 layers of 
finite thickness. The (A4 + 1)th layer extends from z~,~ to co, in accordance with 
the assumptions made in deriving Eqs. (15). Once the sound speed c, and the wind- 
velocity components u,, , uUr for the various layers have been assigned values, the 
coefficients A, in the residual equations may be computed via Eqs. (11) for any 
given layer if w, k,, and k, are specified. Thus, in the Ith layer, Eqs. (10) become 

for z~-~ < z < zI. 
Since the coefficients in Eqs. (26) are constant, their general solution is readily 
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obtained. In particular, if @r and @, are specified at height .zI, then the values of 
these quantities, at a height z where zlel _( z < z,, are given by 

(27) 

The elements of the matrix [S] are given by 

with 

s, = (CAZ(X)}d,j - H{SAZ(X)}Aij 

H = z, - z, 

X = (4, + AwG,W, 

CAZ(X) = cosh[P2] if X > 0 

= cos[(- X)1/2] if X < 0, 

SAZ(X) = {sinh[X1/2])/X1/2 if X > 0 

= {sin[(- X)1’2])/(- X)lj2 if X < 0. 

P3) 

(29) 

(30) 

(31a) 

@lb) 

(324 

Wb) 

For convenience in writing, we have omitted the superscript Z from the A, in 
Eqs. (28) and (30). 

We make use of the functions CAZ((x) and SAZ(X) defined by Eqs. (31) and 
(32) rather than using two different formulas for [S] depending on the sign of 
4, + 42A21. Although the definitions given for these functions would seem- 
ingly preclude their being analytic at X = 0, this is not the case since the power- 
series expansions about X = 0 of (31a) and (32a) are equal, respectively, to those 
of (31b) and (32b). 

We return now to the central problem of developing a method of computing 
the matrix [RI. Equation (26) and the equations which follow it imply that 

where [,!P] represents the matrix [S] computed using 

H = HI = z, - zI.el. 

(33) 

Since GQIs, and di, are continuous at the boundaries zI separating the layers, we may 
use Eqs. (33) to build the relation 
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where matrix multiplication is implied. We accordingly identify 

[R] = [p)][pq * * . [S’“i”] (34) 

as the desired equation for the matrix [RI. This, together with Eq. (19), gives 
the necessary formulas for computing the normal-mode dispersion function F 
for given 0, k,, and k, and for any given multilayer atmosphere. 

For the computation of the auxiliary dispersion function P(w, k,, 5, 19), the 
derivatives ~F/~k, and aF/ak, are needed, while dF/do is needed, in addition, 
for the computation of the group velocity using Eq. (22). One could obtain these 
derivatives by numerical differentiation of the function F, but this would not be 
too desirable a method since numerical differentiation is often very inaccurate. 
A preferable method which we exhibit here is the evaluation of the derivatives 
from an explicit mathematical expression. This method does not involve any 
more machine time than that by numerical differentiation and has the advantage 
of giving more reliable results. 

Let us note that the method for computing F developed above gives us an expli- 
cit, although cumbersome, expression which may be differentiated according to 
the usual rules of differential calculus. Let q denote any one of the three variables 
o, k,, or k,. Then, from Eq. (19), 

a%‘q = (~WW& - G’&,IW(@ + -G) 

+ MWWd - ~,,@G”/~q + ~-4-8&d. (35) 

The derivatives of the elements of the matrix [RI may be obtained from a con- 
sideration of Eq. (34). Using the well-known rules for the differentiation of a ma- 
trix product, we obtain 

where 

[aR/aq] = ;* [D”‘] [cw)/i3q] [W’] 

pm] = [~clq[~(2q...[~(I-l)], 

[,rJ"'] = [scl+l)][S'r+2']...[S(M)]. 

(36) 

(37) 

(38) 

The matrices [IV)] and [CPM)] are each defined to be the unit matrix. 
To obtain the matrices d[P]/dq we consider Eqs. (28). Differentiating this ex- 

pression gives, in matrix notation, 
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[fs/tJq] = [as/ax]ax/aq - H{SAZ(X))[dA/dq], (39) 

where [8S’/6’X] is the matrix whose elements are 

aS,/aX = [d[CAZ(X)]/dX}Sij - H(d[SAZ(X)]/dX)Ai,. (40) 

The derivatives of CAZ(X) and MI(X) may be readily shown to be 

d[CAZ(X)]/dX = ($)SAZ(X), (41) 

d[S‘4Z(X) J/&r = [CAZ(X) - SAZ(X)]/(2X). (42) 

We can also obtain the &Y/i3q in terms of the dA,/dq from Eq. (30). These deri- 
vatives may in turn be found from Eqs. (ll)-(13). The same is true for the deriva- 
tives of the quantities GU and the matrix elements A$ which appear in Eq. (35). 
For brevity, we do not explicitly list these derivatives. 

Once the derivatives dF@k, and aF/Fjak, are computed by the method outlined 
above, the auxiliary dispersion function P may be directly computed from Eq. (24). 

In applying this method to machine computations, the computation of F and 
P is relegated to two separate subroutines. Once these subroutines are coded, 
using the method outlined above, the details of the computation need not be 
considered explicitly again. Instead, one needs only to call the relevant subroutine 
when he needs the value of F or P for given w, k,, and ku. 

Some simple guidelines can be given for deciding whether or not a given multi- 
layer-model atmosphere is a valid approximation to a continuously stratified 
atmosphere. These can be established by examining the effect of doubling the 
number of layers and noting the change in the matrix R. If such a study is carried 
through analytically for the case of two layers the following criteria may be derived 
for the thickness of a given layer 

k2H2(Ac/c) << 1, 

(g2k2/Q4)k2H2(Ac/c) < 1, 

(Q2/c2)H2(Ac/c) Q 1, 

[g2k2/(Q2c2)]H2(Ac/c) < 1, 

where AC is the magnitude of the difference in sound speed between the layer in 
question and an adjacent layer. Analogous conditions involving the difference 
Au of wind speed components may be obtained if AC/C in the above formulas 
is replaced by k(Av)/Q. 
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The presence of Sz in the denominator of some of these conditions indicates 
that the multilayer approximation is invalid for any mode for which the relation- 
ship between k and cc) is such that Sz vanishes at any height. For this reason, one 
should be careful to limit one’s calculations to modes having phase velocities 
greater than the maximum wind speed. Fortunately, it is these modes which may 
be expected to be of the greatest interest in applications of the method. 

For modes where the phase velocity is of the order of the sound speed at the 
ground, the principal criteria would appear to be that 

H3 < [c/ldc/dzl]P, 

H3 < [c/jdc/dzl]H,2. 

Here 1 is the horizontal wavelength, dc/dz is the sound speed gradient, and H, 
is the scale height ?/(yg). Typically, H, is of the order of 8 km in the lower at- 
mosphere and c/ldc/dzl is never less than 30 km. Thus, for periods in the 1-lo-min 
range, where A ranges from 20 to 200 km, one may feel fairly confident in his results 
if the layer thicknesses are less than 5 km in the regions where the sound speed 
gradients are largest. This, however, is true only for those modes having phase 
velocities of the order of the speed of sound at the ground. 

Once a multilayer model has been adopted the results computed using it may 
be expected to be most suspect for those modes which either (1) have phase 
velocities which are comparable to the maximum wind speed, or (2) for which 
the parameter g2k2/a4 is much larger than 1, or (3) for modes at higher frequen- 
cies, o) > g/c, where layer thicknesses become comparable to (A2c/jdc/dzl)1’3. 

IV. THE COMPUTATION OF PHASE- AND GROUP-VELOCITY CURVES 

For fixed frequency u), fixed group-velocity direction 19, and a given multilayer 
atmosphere, the quantities F and P may be considered as functions of the phase 
velocity vP and the phase-velocity direction 8 k. We accordingly consider the prob- 
lem of finding the roots of the equations F(v,, 0,) = 0 and P(v,, f3,) = 0. To 
accomplish this, the following method would be appropriate. First, the zeroth 
approximation for ok is taken as 0. To find the zeroth-order approximations for 
vP , the function F(v, ,0) is scanned by letting vP run through a sequence of values 
with regular intervals starting with some minimum value and terminating at some 
maximum value. The intervals in which F changes sign define the zeroth-order 
approximations to the vpn. 

Once the zeroth-order approximations for up and 8, are determined, the actual 
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values may be determined by successively solving 

&n+l), &n) 
k >=o (43) 

for up+l) and then solving 

p(q+l), ep+l)) = 0 (44) 

for t@+l). Here VP) and 19k) denote the nth order approximations to the roots. 
Equations (43) and (44) are solved by the Newton-Ralphson method [8] using 
the values of VP’ or 0p’, respectively, for initial approximations to VP+‘) and Q+l) 
in the iteration. In practice, the convergence of the method is very rapid for finding 
the roots to accuracies of 1O-5 km/set in either component of the phase velocity. 

Once the roots for I+, and ek are determined, the corresponding values of the 
group velocity magnitude V, can be computed from Eqs. (25). 

This process can be repeated for a sequence of values of o and thus the curves 
of vP,, t&, and vgn may be obtained. A somewhat more efficient method, however, 
would be to carry out this process for a small number of widely spaced values 
of o and then to fill in the gaps by following each normal mode separately, letting 
co increase in steps of a small increment d, using 

to obtain the zeroth-order approximations for ekn and vpn at (o + d from the 
values of &&, up,, , and vgn computed at o. 

In applying the multilayer approximation to the calculation of phase- and 
group-velocity curces, some considerations of machine time should be taken into 
account. In single precision (eight significant figures), computation of the normal- 
mode dispersion function on the IBM 7094 requires approximately 2 msec per 
layer. The simultaneous calculation of the three derivatives of the normal-mode 
dispersion function requires about 10 msec per layer. If one takes an atmosphere 
of 50 layers and does a computation which requires 1000 values of the normal- 
mode dispersion function, a time of about one minute will be expended. Since 
it is the roots of the normal-mode dispersion function which are desired, it is 
reasonable to expect that at least five separate computations of the normal-mode 
dispersion function will be required to find a single root to five significant figures. 
If one wants simultaneous roots of Eqs. (18) and (24), the number may be much 
larger. Thus, if the problem is not coded with some care, times comparable to 
0.1 min may be required to find a single simultaneous root. If a large number of 
computations are required, this can lead to a prohibitive expense. 
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A manner of circumventing this, which we have tried with some success, is to 
take the zeroth-order approximation for vP (computed letting ok = 0) as an ac- 
ceptable solution for vi,, assuming that the deviation ok - 15 is small. Once this 
approximate value of uD is found, the value of ok is computed from the approximate 
formula 

8, = 8 + qaqae), 

where ek is set equal to 0 in the arguments of P(m, vP, ok, 0) and of aP(o, vP, 
ok, 0)/M. The group velocity is then computed by Eq. (22) setting ok = 0. This 
method of calculation is clearly quite permissible if the winds are sufficiently 
weak. The drawback of the method is that it does not guarantee the accuracy 
of vP and ok for nonzero winds. Its primary advantage over the more exact method 
described previously is that it offers a considerable saving (as much as a factor 
of five) in computation time. We have coded the problem by both methods and 
find that, for realistic atmospheres and for the modes of interest which travel 
with velocities of the order of the speed of sound at the ground, the simple ap- 
proximation described above is adequate. 

To illustrate the effectiveness of the general method, we reproduce here the 
results of computations carried out for a representative atmosphere of 22 layers. 
The parameters characterizing this model atmosphere are listed in Table I. The 
sound-speed profile is typical of midlatitudes and has the characteristic two mini- 
mums. The winds are assumed to be entirely in the x direction. This particular 
wind profile was chosen primarily for the purpose of investigating the effects 
of stratospheric winds on the wave propagation. The peak wind speed of 72.1 
meters/set (roughly one fourth the speed of sound) is representative [9] of wind 
speeds which might be expected in this altitude range at midlatitudes. 

Figure 1 shows the results of one type of calculation which is particularly suit- 
able for a digital computer. The sign of the normal-mode dispersion function is 
printed out for an array of discrete values of the phase velocity and the angular 
frequency for fixed phase-velocity direction. A plus is printed when the function 
is positive and a minus is printed when it is negative. If it does not exist, an X 
is printed. The resulting printout gives a good qualitative picture of the lines along 
which the function is zero. Figure 1 was computed for a phase-velocity direction 
of 180’. Since the winds are only in the x direction, the group-velocity direction 
is also 180’. The phase velocities, which represent the vertical coordinate of the 
figure, range from 0.200 to 0.500 km/set. The horizontal coordinate is the angular 
frequency m which ranges from 0.01 to 0.1 rad/sec with scale divisions of 0.0018 
rad/sec. In Figure I, one may recognize portions of the dispersion curves of 13 
modes. Eleven of these have similar forms-the phase velocity for each being 
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TABLE I 

REPRESENTATIVE MODEL OF A MULTILAYER ATMOSPHERE USED IN NUMERICAL COMPUTATIONS 

Height of 
layer bottom 

(km) 

Height of 
layer top 

(km) 
--__~ - 

Speed of 
sound 

(km/set) 

Wind velocity 
(x-component) 

(km/set) 

0.0 2.0 0.3362 0.0 
2.0 4.0 0.3284 0.0 
4.0 6.0 0.3204 0.0 
6.0 8.0 0.3121 0.0 
8.0 10.0 0.3037 0.0 

10.0 11.0 0.2972 0.0 
11.0 25.1 0.2949 0.0 
25.1 30.0 0.3007 0.0051 
30.0 34.0 0.3124 0.0154 
34.0 38.0 0.3162 0.0309 
38.0 42.0 0.3236 0.0412 
42.0 36.0 0.3309 0.0618 
46.0 53.4 0.3368 0.0669 
53.4 60.0 0.3300 0.0721 
60.0 70.0 0.3020 0.0618 
70.0 80.0 0.2712 0.0309 
80.0 91 .o 0.2579 0.0154 
91.0 108.0 0.2889 0.0 

108.0 120.0 0.3830 0.0 
120.0 130.0 0.4814 0.0 
130.0 140.0 0.5558 0.0 
140.0 infinite 0.5661 0.0 

greater than 0.5 km/set at low frequencies, decreasing at first rapidly with in- 
creasing frequency, and then decreasing at a slower rate as the frequency increases 
further. The remaining two modes have lower cutoff frequencies of approximately 
0.30 and 0.22 km/set, respectively. 

We have done a calculation similar to that represented by Fig. 1 for the down- 
wind case, where the group and phase velocity directions are both O’, and we find 
qualitatively similar results with one interesting exception. An additional mode 
appears in the lower left-hand corner of the figure. Just how this mode evolves 
as the direction of propagation is varied is illustrated in Fig. 2. This, which was 
obtained using the same programing technique as Fig. 1, shows how the phase 
velocity of the various modes vary with the phase-velocity direction when the fre- 
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quency is held constant. The vertical coordinate in the figure is the phase velocity 
and the horizontal coordinate is the phase-velocity direction, which ranges from 
0’ to 360’ in units of 10’. The angular frequency was fixed at 0.012 rad/sec 
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ANGULAR fREQUENCY (RADIANS/SEC) 
FIG. 1. Digital computer printout of the sign of the normal-mode dispersion function for 

phase velocities between 0.2 and 0.5 km/xc and angular frequencies between .Ol and 0.1 rad/sec. 
The printout is at angular frequency intervals of .0018 rad/sec and phase-velocity intervals of 
.Ol km/set. The phase- and group-velocity directions are both 180’. 

during the computtion. Anisotropic effects are particularly evident for the modes 
which have lower phase velocities. 

In Table II we list phase and group velocities versus angular frequency for 
group-velocity directions of O’, 90°, and 180°, respectively, for the “fundamental 
mode” shown in Figs. 1 and 2. (By fundamental mode, we mean that mode which 
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has a phase velocity of approximately 0.32 km/set at very low frequencies in the 
downwind direction.) The phase-velocity direction is also tabulated for the case 
of 90° group-velocity direction. It is not tabulated for the cases when the group- 
velocity direction is 0’ or 180’ since the phase-velocity direction is automatically 
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FIG. 2. Digital computer printout of the sign of the normal-mode dispersion function for phase 
velocities between 0.2 and 0.5 km/set and phase-velocity directions between 0’ and 360°. The 
printout is at phase-velocity direction intervals of 10’ and phase-velocity intervals of 0.01 km/see. 
The angular frequency is 0.012 rad/sec. 

the same as the group-velocity direction for these cases. Similar computations are 
presented for the first and second acoustic modes in Tables III and IV, respectively. 
These modes correspond to the first two curves in Fig. 1 which appear with high 
phase velocities when the frequency is low. This method of presenting the com- 
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TABLE II 

TABULATION OF PHASE VELOCITY I+,, GROUP VELOCITY vp , AND PHASE-VELOCITY DIRECTION& 
VERSUSANGULARFREQUENCYWFORFD[EDGROUP-VELOCINDIRECT~ON~FORTHEFUNDAMENTAL 

MODE 

w VP 
(rad/sec) (km/set) (k&x) 

4 
(degrees) 

80 = 0 8 = 9o" 0 = 180' 0 = 00 0 = 9o" 0 = 180' 0 = 9o" 

.Oll .3291 .3119 .3072 .3233 .3117 .3060 91.38 

.012 .3286 .3118 .3071 .3218 .3116 .3056 91.38 

.013 .3280 .3118 .3070 .3203 .3115 .3051 91.38 

.014 .3274 .3118 .3068 .3188 .3114 .3045 91.38 

.015 .3267 .3117 .3066 .3173 .3113 .3038 91.38 

.016 .3261 .3117 .3064 .3158 .3112 .3028 91.38 

.017 .3254 .3117 .3062 .3144 .3110 .3016 91.38 

.018 .3247 .3116 .3059 .3130 .3107 .3006 91.39 

.019 .3241 .3116 .3055 .3118 .3104 .2976 91.39 

.020 .3234 .3115 .3050 .3105 .3098 .2936 91.40 
,021 .3227 .3114 .3042 .3091 .3087 .2856 91.41 
,022 .3220 .3112 .3028 .3069 .3056 .2619 91.45 
.023 -3212 .3106 .2975 .2982 .2876 .1501 91.58 
.024 .3157 .2985 .2685 .1073 .0715 .0602 94.40 
.025 .2724 .2501 .2289 .0491 .0421 .0433 95.23 
.026 .2227 .2043 .1926 .0340 .0330 .0359 94.16 

putational results was chosen in preference to plotted curves in order to allow 
the reader as much detail as possible in quantitatively assessing the effects of winds. 

Although our primary purpose here is to demonstrate the feasibility of the 
computation, several features of the curves tabulated in Tables II, III, and IV 
should be pointed out. The phase velocity in any given mode for any given fre- 
quency is always higher downwind than upwind, although this is not necessarily 
the case for the group velocity. Differences between the phase- and group-velocity 
directions may be as large as 16O for propagation crosswind, but this difference 
varies markedly from mode to mode and with frequency. The general shape of the 
group-velocity curves does not vary too markedly for the fundamental mode 
where in all cases it decreases monotonically with increasing frequency. However, 
the dispersion (i.e., the derivative of the group velocitiy) is apparently less in 
the crosswind direction than either upwind or downwind. This is in disagreement 
with the author’s previous approximate calculations [7]. 
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TABLE 111 

TABULATION OF PHASE VELOCITY v,, , GROUP VELOCITY vC, AND PHASE-VELOCITY DIRECTION 0, 
VERSUS ANGULAR FREQUENCY w FOR FIXED GROUP-VELOCITY DIRECTION 0 FOR THE FIRST 

ACOUSTIC MODE 

0 
(rad/sec) 

“P 
(km/set) 

% 
(km/set) 

01, 
(degrees) 

e = o” 0 = 900 fl = 180’ 8 = 00 0 = 9o” 8 = 180’ 

.OlO .5050 .5050 .5050 .4718 .4717 .4717 90.0 

.Oll .5012 .5012 .5011 .4600 .4599 .4598 90.0 

.012 .4968 .4968 .4968 .4464 .4463 .4462 90.0 

.013 .4918 .4918 .4917 .4309 .4307 .4305 90.0 

.014 .4861 .4860 .4860 .4132 .4129 .4125 90.0 

.OlS .4795 .4794 .4793 .3930 .3925 .3919 90.0 

.016 .4719 .4718 .4716 .3700 .3692 .3682 90.0 

.017 .4632 .6429 .4627 .3439 .3425 .3406 90.0 

.018 .4529 .4525 .4520 .3142 .3120 .3084 90.1 

.019 *4408 .4401 .4390 .2807 .2769 .2702 90.1 

.020 .4262 .4249 .4226 .2432 .2369 .2235 90.2 

.021 .4084 .4059 .4002 .2020 .1919 ,1659 90.5 

.022 .3860 .3810 .3667 .1585 .1436 .1068 90.1 

.023 .3574 .3475 .4238 .1160 .0988 .0923 92.3 

.024 .3248 .3145 .3179 .1428 ,181O .2214 91.5 

* 025 .3211 .3121 .3050 .2990 .2987 .2633 91.3 

.026 .3203 .3118 .3032 .3055 .3066 .2644 91.3 

.027 .3198 .3116 .3014 .3066 .3082 .2548 91.4 

.028 .3193 .3115 .2991 .3070 .3087 .2401 91.4 

.029 .3189 .3114 .2961 .3071 .3088 .2252 91.4 

.030 .3185 .3113 .2927 .3072 .3087 .2150 91.4 

,031 .3181 .3112 .2892 .3072 .3085 .2104 91.5 

.032 .3177 .3111 .2858 .3072 .3081 .2096 91.5 

.033 .3174 .3110 .2827 .3072 .3077 .2106 91.5 

.034 .3171 .3109 .2799 .3072 .3070 .2125 91.6 

.035 .3168 .3107 12775 .3072 .3061 .2145 91.7 

.036 .3165 .3105 .2753 .3072 .3047 .2166 91.9 

.037 .3163 .3103 .2733 .3072 .3026 .2185 92.1 

.038 .3160 * 3100 .2716 .3072 .2989 .2202 92.5 

.039 .3158 .3094 .2700 .3072 .2917 .2217 93.2 

.040 .3156 .3082 .2685 .3072 .2783 .2231 94.6 

0 = 9o” 
___ 
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TABLE IV 

TABULATION OF PHASE VELOCITY vp, GROUP VELOCITY v~, AND PHASE-VELOCITY DIRECTION Ok: 
VERSUS ANGULAR FREQUENCY w FOR FIXED GROUP VELOCITY DIRECTION 8 FOR THE SECOND 

ACOUSTIC MODE 

w % % &c 
(rad/sec) (km/set) (kmjsec) (degrees) 

e = o” e = 900 
-- - 

6 = 180’ e = 00 8 = 9o” 0 = 180’ 8 = 9o” 

.024 

.026 

.028 

.030 

.032 

.034 

.036 

.038 

.040 
,042 
.044 
.046 
.048 
.050 
.052 
.054 
,056 

- - 

- .4362 
.5148 .3878 
.4512 .3606 
.4164 .3438 
.3938 .3325 
.3775 .3246 
.3650 .3191 
.3550 .3154 
.3467 .3133 
.3399 .3121 
.3341 .3115 
.3292 .3112 
.3250 .3109 
.3214 .3107 
.3182 .3104 
.3154 .3103 

.4264 

.3620 

.3314 

.3182 

.3129 

.3104 

.3088 

.3075 

.3063 

.3050 

.3034 

.3015 

.2993 

.2968 

.2942 

.2917 

.2893 

- 
- 

.1491 

.1812 

.2034 
.2173 
.2258 
.2311 
.2351 
.2386 
.2417 
.2447 
.2475 
.2500 
.2523 
.2544 
.2563 

- .1092 - 

.1342 .1421 106.0 

.1660 .1791 102.2 

.I892 .2316 100.4 

.2072 .2668 99.2 

.2209 .2811 98.2 

.2320 .2857 97.1 

.2432 .2858 95.9 

.2579 .2829 94.a 

.2777 .2175 92.3 

.2941 .2697 91.3 

.3014 .2603 90.9 

.3039 .2512 90.8 

.3049 .2444 90.8 

.3051 .2400 90.8 

.4051 .2376 90.8 

.3049 .2362 90.8 

For the first acoustic mode, wind effects are virtually negligible at low fre- 
quencies-indicating that the energy is predominantly carried in a layer above the 
assumed stratospheric winds. Note that a sharp group-velocity minimum is 
reached for all directions of propagation at an angular frequency of about 0.023 
rad/sec. For propagation upwind a group-velocity maximum is encountered at 
u) = 0.024 rad/sec which is not encountered for propagation downwind and cross- 
wind. 

For the second acoustic mode, the group velocity initially increases with in- 
creasing frequency. A group-velocity maximum appears in the tabulation at cr) = 
.038 and at cu = .053 for propagation upwind and crosswind, respectively. No 
such maximum appears for propagation downwind. 

The extent to which these features depend on the detailed structure of the 
atmosphere will be discussed in a later article. 
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V. CONCLUDING REMARKS 

Before discussing the principal implications of our analysis, we would like to 
point out one incidental result which may be of some theoretical interest. This 
is that the quantities u,/Q and 17 . u/L? are continuous at surfaces at which the 
horizontal wind velocity and the sound speed (or temperature) are discontinuous. 
This follows from Eqs. (4), (lo), and (1 I), and the fact that the ambient pressure 
is continuous with height. Although the continuity of these quantities may be 
known to some investigators, we doubt that it is widely known. The continuity 
of the latter quantity certainly does not appear to be intuitively obvious. 

The theory presented in this paper has shown that the multilayer approximation 
may be extended to include winds. Furthermore, it has been demonstrated that 
the use of the approximation affords a practical method of computing dispersion 
curves of normal modes in temperature- and wind-stratified atmospheres. Disper- 
sion curves computed by the method should be useful in the interpretation of 
microbarovariograph data recorded at large distances from localized sources 
of finite time duration such as volcano eruptions and nuclear tests. 

This, however, is but one application of the multilayer approximation. Other 
applications which remain to be explored for temperature- and wind-stratified 
atmospheres are the synthesis of actual waveforms from localized sources, the 
computation of amplitude-height profiles for propagating normal modes, and the 
development of a theory of ionospheric disturbances generated by acoustic- 
gravity waves created by weather disturbances. The theory presented in this paper 
should provide the framework for these applications. 
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